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Figure 1: WorldScribe towards making the real world accessible for blind people through context-aware live visual descriptions. 
WorldScribe dynamically combines diferent vision-language models to provide live adaptive descriptions. (a) When the user 
turns quickly to scan the environment and yields frequent visual changes, WorldScribe generates basic descriptions with 
word-level labels (e.g., YOLO World [27]) or general descriptions with objects and spatial relationships (e.g., Moondream [10]). On 
the other hand, (b) when the user remains static and faces a new scene for a duration that indicates their interests, WorldScribe 
provides rich descriptions from an overview to details (e.g., GPT-4v [7]) to facilitate their visual scene understanding. 

ABSTRACT 
Automated live visual descriptions can aid blind people in under-
standing their surroundings with autonomy and independence. 
However, providing descriptions that are rich, contextual, and just-
in-time has been a long-standing challenge in accessibility. In this 
work, we develop WorldScribe, a system that generates automated 
live real-world visual descriptions that are customizable and adap-
tive to users’ contexts: (i) WorldScribe’s descriptions are tailored 
to users’ intents and prioritized based on semantic relevance. (ii) 
WorldScribe is adaptive to visual contexts, e.g., providing consecu-
tively succinct descriptions for dynamic scenes, while presenting 
longer and detailed ones for stable settings. (iii) WorldScribe is 
adaptive to sound contexts, e.g., increasing volume in noisy en-
vironments, or pausing when conversations start. Powered by a 
suite of vision, language, and sound recognition models, World-
Scribe introduces a description generation pipeline that balances 
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the tradeofs between their richness and latency to support real-
time use. The design of WorldScribe is informed by prior work 
on providing visual descriptions and a formative study with blind 
participants. Our user study and subsequent pipeline evaluation 
show that WorldScribe can provide real-time and fairly accurate 
visual descriptions to facilitate environment understanding that is 
adaptive and customized to users’ contexts. Finally, we discuss the 
implications and further steps toward making live visual descrip-
tions more context-aware and humanized. 
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1 INTRODUCTION 
Automated live visual descriptions can help blind or visually im-
paired (BVI) people understand their surroundings autonomously 
and independently. Imagine Sarah, who is blind, is exploring the 
zoo with her 2-year-old toddler. As they walk around the African 
grassland section, live visual descriptions provide rich information 
about the texture of the terrain animals are resting on and occa-
sionally notify her about the movement of the zebras and rhinos. 
They join a girafe feeding tour, and live visual descriptions narrate 
when a couple of girafes reach out near her toddler. She feeds the 
lettuce leaves in her hand to them and snaps a nice photo. Such 
contextual visual descriptions can supplement their environmental 
understanding and support a range of ever-changing scenarios. 

However, providing rich and contextual descriptions has been a 
long-standing challenge in accessibility. Researchers have explored 
ways to provide BVI individuals with visual descriptions across 
various visual media. For example, traditional AI captioning for 
digital media (e.g., images, videos) ofers basic information but of-
ten misses the nuanced details BVI users need in varied contexts 
[44, 74]. While human-powered [19, 38, 60, 61] or human-AI hybrid 
techniques [24, 32, 64] deliver more detailed descriptions asyn-
chronously for digital media, they fall short in real-world scenarios 
that require descriptions to be timely and pertinent to the user’s 
context. As a result, existing solutions in describing the real world 
have been limited to leveraging remote sighted assistance (RSA) 
to access BVI users’ live camera streams and describe the visuals, 
such as Chorus:View [48] with crowd workers, BeMyEyes [2] with 
volunteers, and Aira [1] with trained agents. However, these hu-
man services can be extremely costly, not always available, and 
potentially raise privacy concerns. 

The advent of vision-language models (VLMs) and large lan-
guage models (LLMs) makes it possible to provide automated visual 
descriptions without human assistance. Of-the-shelf tools, such 
as SeeingAI [11], EnvisionAI [4] or ImageExplorer [49], enable 
BVI people to upload an image and receive detailed descriptions. 
However, the asynchronous and one-size-fts-all nature of the pro-
duced descriptions makes it difcult to adapt these tools to dynamic 
real-world scenarios. Providing seamless real-time automated de-
scriptions is further challenging when considering user needs and 
contexts [44, 74]. For instance, BVI people have individual prefer-
ences [74] (e.g., diferent visual experiences and familiarity with 
the environment), and the rich visual contexts may infuence in-
formation priority depending on users’ needs (e.g., walking on the 
street, or visiting a museum). Furthermore, real-world sounds could 
hinder the perception of spoken descriptions [23]. Therefore, when 
providing live visual descriptions in the real world, it is crucial to 
collectively consider user intent, visual and sound contexts (which 
we will refer to as the user’s context throughout the paper). 

Informed by prior works on providing visual descriptions and 
a formative study with fve BVI people, we identifed design con-
siderations for a system to provide live visual descriptions in the 
real world, such as providing descriptions with overview frst then 
adaptive details on the fy, prioritizing descriptions based on seman-
tic relevance, and enabling customizability based on varied user 
needs. We then develop WorldScribe, a system that generates auto-
mated visual descriptions that are adaptive to the users’ contexts 

Figure 2: (a) Sarah is exploring the zoo with her toddler us-
ing WorldScribe, (b) which describes surroundings to her. (c, 
d) They join a girafe feeding tour, live visual descriptions 
narrate when girafes reach out near her toddler, who feeds 
the lettuce leaves to them and (e, f) snaps a nice photo. 

in real-time, and in the real world. First, WorldScribe is adaptive to 
the user’s intent, e.g., prioritizing the most pertinent descriptions 
based on semantic relevance, and visual attributes based on user 
customizations. Second, WorldScribe is adaptive to visual contexts; 
for instance, it provides consecutively succinct descriptions for dy-
namic visual scenes while it presents longer and more detailed ones 
for stable settings. Third, WorldScribe is also adaptive to sound 
contexts, e.g., increasing description volume in noisy environments, 
or pausing when conversations start. 

Powered by a suite of vision, language, and sound recognition 
models, WorldScribe introduces a description generation pipeline 
with diferent VLMs that balances the tradeofs between their rich-
ness and latency to support real-time usage (Figure 1). WorldScribe 
dynamically assigns prompts to VLMs encoded with user customiza-
tions on their information needs and in-the-moment visual contexts 
(e.g., busy or static), and prioritizes descriptions based on the user 
intent and the proximity of the described content to the user. World-
Scribe also keeps the spoken descriptions up-to-date by examining 
the object compositions and similarity between the VLM-referred 
and current camera frames and the changes in user orientations. 

Our pipeline evaluation shows that WorldScribe can provide 
fairly accurate visual descriptions, cover important information, 
and prioritize descriptions based on users’ intent and proximity. 
Furthermore, our user study with six BVI participants demonstrates 
that WorldScribe enables efective environment understanding that 
is adaptive and customizable to users’ contexts. However, there is 
still a gap in making AI-generated descriptions humanized, user-
centric, and context-aware, which we discuss and provide implica-
tions for future work. WorldScribe represents an important step 
towards solving this long-standing accessibility challenge, and its 
technical approach may fnd applications broadly for enhancing 
real-time visual assistance to promote real-world and digital media 
accessibility. 
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Table 1: Overview of research or commercial apps for describing visual media. AD denotes audio description. 

App Category Application Description type 
Enabling 
source 

Real 
time 

Audio presentation Customization options 

BlindSquare [3] Audio direction Map ✓ Spatial audio Landmarks 
Navigation SoundScape [9] Audio direction Map ✓ Spatial audio Landmarks, route 

NavCog [16] Audio direction Map ✓ Landmarks 

Image 
Understanding 

Seeing AI [11] 
Envision AI [4] 

ImageExplorer [49] 

Image description 

Image description 

Image description 

AI 
AI 

AI 

Short or detailed content 
Short or detailed content 
Number of info layers, 
accuracy, specifc object info 

Video 
Understanding 

YouDescribe [38] 
Rescribe [64] 

OmniScribe [24] 

Audio description 

Audio description 

Audio description 

Human 

Human-AI 

Human-AI 

inline ADs 
inline ADs 
Spatial Audio, inline 
and extended ADs 

ShortScribe [77] Audio description AI 
InfoBot [72] Video VQA AI Request to AI 

Remote Sighted Aira [1] Verbal Guidance Human ✓ Request to sighted agents 
Assistance BeMyEyes [2] Verbal Guidance Human ✓ Request to sighted agents 
Visual Question VizWiz [19] Image description Human Request to crowd workers 
Answering BeMyAI [8] Image description AI Request to AI 
Real-world 
Visual 
Understanding 

WorldScribe 
(this work) 

Live visual 
description 

AI ✓ 
Auto volume 
adjustment or pause 

User intents, objects, 
visual attributes, audio 
presentations, verbosity 

2 RELATED WORK 
Our work builds upon prior work to provide BVI people with de-
scriptions for accessing digital media and the real world, in order to 
fulfll their diverse needs. We describe our motivation and insights 
from previous literature below. 

2.1 Descriptions for Digital Visual Media 
To understand digital visual media, BVI people typically rely on 
textual descriptions. World Wide Web Consortium has established 
Web Content Accessibility Guidelines for creators to add proper 
captions to images [82] and audio descriptions to videos [62, 80, 
81] for BVI people to receive equal information as sighted people. 
Several platforms allowed BVI people to request descriptions for 
images and videos that lack accessible visual descriptions from 
volunteer describers, such as YouDescribe [38] and VizWiz [19]. 
Despite the availability of these resources, learning those guidelines 
and providing good descriptions remain difcult [60]; the scarcity 
of human resources also makes it hard to address the high volume of 
requests from BVI people [31], who may have diferent information 
needs based on their access contexts [73, 74]. 

To address these challenges, semi-automatic AI systems have 
been developed to streamline the description authoring process, 
such as generating initial image captions [32] or audio descriptions 
[64, 72, 85]. Although these systems reduce laborious tasks, they still 
require human efort to make one-size-fts-all descriptions usable. 
Recently, VLM-powered systems can generate high-quality audio 
descriptions comparable to human describers [77] and allow BVI 
people to query visual details interactively [8, 25, 37, 72]. However, 

the asynchronous and one-size-fts-all nature of descriptions makes 
it difcult to adapt these tools to dynamic real-world scenarios. In 
response, this work aims to provide live contextual descriptions for 
BVI users by understanding their intent and visual contexts. This is 
achieved through a description generation pipeline with dynamic 
prompt assignments based on user contexts, and diferent VLMs 
that balance the tradeofs between their richness and latency to 
achieve real-time purposes. 

2.2 Descriptions for Real-World Accessibility 
Accessing the real world through descriptions enhances BVI indi-
viduals’ independence in various tasks, such as object identifcation 
[17, 36, 58], line following [46], and navigation [3, 9, 16, 30, 42, 
43, 45, 47]. Navigation is especially important but challenging in 
unfamiliar settings, which demands extensive environmental under-
standing [30, 45], such as recognizing intersections [45, 47], signs 
[15, 45, 83], and trafc light statuses [26, 75]. While these systems 
ofered critical task-specifc guidance (e.g., audio directions), they 
lacked visual descriptions for ever-changing surroundings. Tools, 
such as SeeingAI [11], ImageExplorer [49], and Envision AI [8], 
enabled BVI users to snap a photo and receive comprehensive vi-
sual descriptions within seconds, while BeMyAI [8] allowed BVI 
people to access details through turn-by-turn interactions (Table 1). 
Yet, their utility falls short in rapidly changing visual scenes that 
require live and continuous descriptions. 

An alternative for understanding the dynamic real world is 
through human assistance, such as RSA, which connects BVI users 
with sighted agents via video calls to fulfll requests through verbal 
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guidance. However, conveying visual information in this way can 
be challenging and cognitively demanding [41, 51], where agents 
were under pressure to understand and efectively communicate 
key details [50–52], or they needed to tailor the level of detail to the 
user’s needs [35, 51]. Moreover, RSA services could raise privacy 
concerns [20], incur high costs (e.g., $65 for 20 monthly minutes 
with professional services, such as Aira [1]), and volunteer-based 
options, such as BeMyEyes [2], may not always be available. In 
this work, we aim to make the real world accessible to BVI people 
through automated live visual descriptions in order to enhance their 
environmental understanding beyond navigation instructions. 

2.3 Fulflling Diverse Needs of BVI People 
Creating high-quality descriptions that meet BVI people’s diverse 
information needs is challenging for diferent visual media. Prior 
research found that current one-size-fts-all approaches to image 
descriptions are insufcient for providing necessary details for 
meaningful interaction [44, 57, 67, 68, 73, 74]. Stangl et al. [73, 74] 
identifed that the source of an image and the user’s information 
goal impacted their information wants, and proposed universal 
terms (e.g., having identity or names for describing people) as mini-
mum viable content, with other terms provided on demand based 
on users’ contexts (e.g., person’s height, hair color, etc.). Guidelines 
also indicated that the inclusion of certain visual details should be 
context-based, such as having general information for frst access 
or having details (e.g., color, orientations of objects) when gauging 
one’s understanding of certain image content [13, 65]. 

The varied information needs of BVI people were also found 
when accessing diferent types of videos [39, 59, 72], such as difer-
ent preferences on the audio description content (e.g., object details, 
settings), and output modalities (e.g., audio, tactile). For 360-degree 
videos, which ofer richer visual information and immersion, BVI 
people also have varied preferences for linguistic aspects (e.g., level 
of details, describing from frst- or second-person view), or audio 
presentations (e.g., spatial audio) [24, 40]. Thus, the way of present-
ing visual information and determining its richness is crucial and 
depends on the user’s needs and context. 

These fndings of users’ varied preferences for digital media 
also extended to the real world. Herskovitz et al. [33] identifed 
the needs of BVI individuals, who often customize assistive tech-
nologies for daily activities by combining mobile apps for diferent 
visual tasks, such as obtaining clock directions from Compass or 
descriptions from BlindSquare, or fltering visual information (e.g., 
text or colors). Overall, prior work in both the digital and real worlds 
has highlighted the importance of customization for adapting to 
diverse user preferences and contexts. In this work, we explore 
live visual descriptions that are context-aware, by enabling cus-
tomization options on the description content (e.g., level of details, 
visual attributes), and audio presentation (e.g., pausing or increasing 
volume) to tailor to the diverse needs of BVI people. 

3 FORMATIVE STUDY 
We conducted a formative study to identify design requirements 
for a system providing live visual descriptions in the real world. 
We conducted semi-structured interviews with 5 BVI participants 

(Table 2) to gather feedback on their needs through several poten-
tial scenarios. We developed scenarios considering several aspects, 
including user intent, familiarity with environments, visual com-
plexity, and sound contexts. We developed scenarios considering 
user intent, familiarity with environments, visual complexity, and 
sound contexts, as these aspects were identifed in previous works 
as infuencing information needs [16, 23, 30, 44, 45, 73, 74]. Partici-
pants were asked to imagine using a future live description system 
capable of capturing visuals and sounds in their surroundings and 
brainstorm their needs and potential solutions. From these discus-
sions, we extracted key insights refecting participants’ needs and 
strategies, which we used in the design of WorldScribe. 

3.1 Design Considerations 
We reported design considerations derived from our participants: 

D1 - Overview frst, adaptive details on the fy. Participants 
emphasized the need for descriptions with proper levels of granu-
larity, depending on their context. They preferred immediate and 
succinct information when several important events occurred simul-
taneously (e.g., multiple barriers and directions during navigation), 
and longer and detailed descriptions when there was no time pres-
sure (e.g., understanding artwork in a museum). When searching 
for something, they wanted an overview of the space, including 
landmarks and spatial locations, followed by more details as they 
approached the target or encountered similar items requiring dif-
ferentiation. This approach aligns with the “Overview frst, zoom 
and flter, then details-on-demand.” by Shneiderman [70]. Therefore, 
our solution should provide the proper level of information and 
delve into details when users express interest. 

D2 - Prioritize descriptions based on semantic relevance. 
Participants mentioned strategies for fltering and prioritizing com-
plex visual information. The most commonly noted strategy was 
to prioritize descriptions relevant to their goals of context, such 
as road signs or barriers during navigation, available stores and 
oferings during meal times, etc. They also emphasized that nearby 
objects are more important for safety and should be prioritized 
over distant information. Our system should present information 
most relevant to the user’s goals and proximity to ensure timely 
and practical use. 

D3 - Enable customizability for varied user needs. Similar 
to prior work in Section 2.3, we observed varied individual prefer-
ences from our participants. They expressed diferent information 
needs depending on the context. For example, descriptions should 
consider their mobility, such as providing information about objects 
out of their cane reach (e.g., hanging lights, cars with high ground 
clearance) or focusing on dynamic obstacles but not static ones 
in their familiar environments. Participants also noted that sound 
context infuences the consumption of descriptions, with some sug-
gesting pausing or increasing the volume in noisy environments. 
Some preferred manual control over these options, while others 
pointed out that the automatic approach would beneft urgent or 
busy scenarios, such as navigation or if the description content 
is crucial. Based on these fndings, WorldScribe should ofer cus-
tomizable options for description content and presentation to meet 
diverse user needs. 
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Figure 3: WorldScribe system architecture. (a) The user frst specifes their intent through speech and WorldScribe decomposes 
it into specifc visual attributes and relevant objects. (b) WorldScribe extracts keyframes based on user orientation, object 
compositions, and frame similarity. (c) Next, it generates candidate descriptions with a suite of visual and language models. (d) 
WorldScribe then prioritizes the descriptions based on the user’s intent, proximity to the user, and relevance to the current 
visual context. (e) Finally, it detects environmental sounds and manipulates the presentation of the descriptions accordingly. 

4 WORLDSCRIBE 
WorldScribe is a system that provides live visual descriptions for 
BVI people to facilitate their environmental understanding. BVI 
users can specify their intent, general or specifc, which will be de-
composed by WorldScribe into specifc visual attributes and objects 
of relevance (Intent Specification Layer). Then, WorldScribe 
extracts key frames from the camera video stream (Keyframe Ex-
traction Layer), and employs a suite of vision and language mod-
els to generate rich descriptions (Description Generation Layer). 
The descriptions are prioritized based on users’ intent, proximity, 
and timeliness (Prioritization Layer), and presented with audio 
manipulations based on sound context (Presentation Layer). 

4.1 Scenario Walkthrough of WorldScribe 
Here, we illustrate WorldScribe in an everyday scenario, taking 
Brook as the main character, a graduate student who is blind. 

Figure 4: (a) Brook is looking for a silver laptop using World-
Scribe in the lab by frst (b) specifying his intent. (c) As he 
moves quickly, WorldScribe reads out names of fxtures, and 
(d) pauses or increases its volume based on environmental 
sounds. When approaching his seat and Brook stops to scan, 
(e) WorldScribe provides verbose descriptions when the vi-
sual scene is relevant to his intent, (f) allowing him to follow 
the cues and fnd the laptop. 

Brook just fnished his advising meeting, and he wants to fnd a 
lab laptop with powerful computational resources to proceed with 
his project. The lab is flled with large items like TVs, workbenches 
with electronics, rows of seats with monitors, personal items, cabi-
nets, and garbage bins, with their layout changing daily based on 
activities. The only cues Brook has from his labmate are that the 
laptop is silver (Figure 4a) and located around the student seats 
amid ofce or personal objects (e.g., monitors, adapters, backpacks). 

Arriving at the spacious lab, Brook specifes his goal by talking 
to WorldScribe (Figure 4b): “fnd a silver laptop on the desk, and 
monitors or other ofce objects might be around it.” He then aims his 
smartphone camera forward with WorldScribe on. Along the way, 
WorldScribe provides concise and timely descriptions of objects not 
directly related to his goal, where several fxtures, such as “TVs” , 
“cabinets” , “workbenchs” , help him orient himself (Figure 4c). 

As he approaches his seat, surrounded by relevant items like 
monitors, chargers, cables, and adapters, WorldScribe becomes 
more verbose (Figure 4e), providing descriptions, such as “A black 
monitor is on with several windows opened” , “A white adapter is next 
to an open laptop” , and “A desk with several laptops on it” . These 
help Brook ascertain that the laptop he seeks is nearby. 

Brook then scans his surroundings slowly with WorldScribe, 
listening to the detailed descriptions with objects’ visual attributes 
to help distinguish the laptop he is looking for (Figure 4f), such as “A 
black laptop with colorful labels on it is opened on the wooden desk” , 
and fnally, “A silver laptop with an Apple logo and black keyboard 
is opened on the white desk” . 

In the lab, people talk, type on keyboards, or use power tools, 
generating various noises. Brook is accustomed to these sounds and 
has customized WorldScribe to accommodate diferent interference 
(Figure 4d). For instance, when his labmates talk, Brook wants to 
join the conversation, so WorldScribe immediately pauses descrip-
tions to let him listen and resumes when they stop talking. Also, 
if a cellphone or clock rings suddenly, WorldScribe automatically 
increases the description’s volume to ensure he can hear it clearly. 

After working for a while, Brook takes a break on the build-
ing’s balcony and uses WorldScribe to explore his surroundings 
(Figure 5a). The balcony has several plants, benches on the sides, 
and cofee tables. When Brook aims the camera at the sky (Figure 
5b), WorldScribe describes “The sky is cloudless, and the sunlight is 
casting a warm glow over the bench” . Brook then turns to the plants 
(Figure 5c), wondering if they have begun to germinate in this 
early spring period, and WorldScribe describes: “Several young plant 
seedlings in a stage of early growth.” The beautiful view revitalizes 
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Figure 5: (a) Brook takes a break on the balcony and uses 
WorldScribe to explore his surroundings. (b) Through the 
live visual descriptions, he knows the sky is sunny, (c) plants 
are growing, and also notices (d) his friends are here. (e) He 
then joins them and has a delightful tea time. (f) WorldScribe 
facilitate the understanding and access of his surroundings, 
and make his day. 

his weary mind from work. Later, Brook recognizes familiar voices 
coming from a cofee table. Turning towards the sound (Figure 5d), 
WorldScribe describes: “Two people are laughing and enjoying cofee 
together at a table” . It then provides detailed descriptions such as 
“A woman with glasses, wearing a light-colored cardigan over a top” 
and “A young man with voluminous, wavy hair styled up” . With this 
detailed visual information and the voices, Brook identifes them, 
joins their conversation, and enjoys a delightful tea time with them 
(Figure 5e & f). 

4.2 User Interface 
WorldScribe has a mobile user interface that takes the user’s camera 
stream, environmental sounds, and user customizations as inputs 
for generating descriptions (Figure 6). The interface includes three 
pages: (i) a main page with a camera streaming view and speech 
interface, (ii) a customization page for visual information, and (iii) a 
page for customizing audio presentation. Users can open the camera 
on the main page and use speech to indicate their intent (Figure 6a), 
such as “fnd my cat, short hair and pale brown.” To customize visual 
attributes of their interest, users can also use the speech on the main 
page, such as “I am interested in color” or “Tell me everything is pale 
brown” , or manually toggle options on or of (Figure 6b). Similarly, 
users can verbally change the presentation of descriptions, such as 
“Pause when someone talks” or “Increase volume during ringtone” , or 
manually select the options through the picker (Figure 6c). 

4.3 Intent Specifcation Layer 
In this layer, WorldScribe aims to obtain the user’s intent and needs 
on visual information to enable customizability (D3). Users specify 
their intent on the mobile interface, and WorldScribe will classify 

Figure 6: WorldScribe user interface. (a) The user can specify 
their intent and needs regarding visual attributes or audio 
presentation through speech input. (b) Besides speech, they 
can manually select options for richness and other visual 
attributes. (c) They can also confgure pauses or increase the 
volume of descriptions if certain sound events are detected. 

it as general or specifc and generate relevant object classes and 
visual attributes by prompting GPT-4 [5]. If the intent is general or 
not specifed (Figure 7a&b), WorldScribe takes object classes from 
existing datasets (e.g., COCO [54], Object365 [69]). If the intent is 
specifc (e.g., “Find a silver laptop on the desk, and other ofce objects 
might be around it”), WorldScribe prompts GPT-4 [5] to generate a 
list of relevant objects (e.g., “[laptop, desk, monitor, ...]”) and adjust 
visual attributes of interest (e.g., color and spatial information) to 
Verbose. WorldScribe then uses YOLO World [27] and ByteTrack 
[86] to support open vocabulary object recognition and tracking. 
Users can further refne the generated object classes and other 
visual attributes through speech (Figure 6a) or manually on the 
customization page (Figure 6b). 

Figure 7: WorldScribe classifes the user’s intent into general 
or specifc, and generates relevant object classes and visual at-
tributes by prompting GPT-4 [5]. (a) By default, WorldScribe 
uses classes from established datasets (e.g., COCO [54], Ob-
ject365 [69]), and sets visual attributes to Normal. (b) If the 
intent is classifed as general, WorldScribe adjusts the visual 
attributes of interest to Verbose. (c) If the intent is classifed 
as specifc, WorldScribe generates relevant object classes and 
sets visual attributes to Verbose. 
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Figure 8: WorldScribe description generation pipeline with diferent inference latency and granularity. (a) Upon receiving a 
keyframe, WorldScribe starts all visual description tasks. (b) First, YOLO World [27] identifes objects as word-level labels in 
real-time (.1s). (c) Second, Moondream [10] generates short descriptions with objects and spatial relationships, with a small 
delay (~3s). (d) Finally, GPT-4v [7] provides detailed descriptions with visual attributes, with a longer delay (~9s). The estimated 
inference time in each model was calculated based on our computing platforms and log data in our user evaluation. 

4.4 Keyframe Extraction Layer 
In this layer, WorldScribe aims to identify keyframes that indi-
cate salient visual changes or user interests in the visual scene. To 
achieve this, our approach uses two methods: camera orientation 
and visual similarity. First, WorldScribe monitors changes in the 
camera’s orientation using the phone’s inertial measurement unit 
(IMU). A keyframe is selected whenever the camera’s orientation 
shifts by at least 30 degrees (one clock unit) from the previous 
keyframe, indicating a possible turn into a new visual scene. 

Second, WorldScribe determines a keyframe by analyzing vi-
sual changes across frames. To minimize detection errors, such 
as misassigned object classes or IDs, we assess the consistency of 
object composition over � consecutive frames. In each �th frame, 
a detected object is represented as (��� ,�� ), where ��� is the ob-
ject’s index, and �� is the class. Thus, all objects in the �th frame 
are represented as �� = (��� ,�� ). A keyframe is identifed if the 
object composition remains consistent across � frames, denoted as 
�� = ��+1 = ... = ��+�−1 ≠ ∅. The (� + � − 1)th frame is then taken 
as the keyframe. Furthermore, to determine if the user is interested 
in a visual scene and requires details (conforming to D1), we check 
the � consecutive keyframes with the same composition and use 
the latest keyframe to prompt VLMs for detailed descriptions. 

In scenarios where the object compositions across � consecutive 
frames are empty, denoted by �� = ��+1 = ... = ��+�−1 = ∅, 
it suggests that the predefned object classes may not cover the 
objects in the scene, resulting in false negatives. Therefore, we still 
take the (� + � − 1)th frame as the keyframe. To eliminate genuinely 
empty scenes (e.g., aiming at a plain white wall), we measure the 
similarity between the candidate frame and the previous keyframe. 
We calculate the cosine similarity (cos_sim) between the image 
feature vectors of the two frames, extracted from the FC2 layer of 
the VGG16 [71]. If cos_sim is lower than a threshold �ℎ��� , we count 
the frame as a keyframe. Furthermore, we observed situations where 
object compositions difer across consecutive � frames, denoted 
by �� ≠ ��+1 ≠ ... ≠ ��+�−1 ≠ ∅. These changes often indicate 
camera drifting or objects moving in and out of view. In such cases, 
we check every 2� frame, selecting the (� + 2� − 1)th frame as a 
keyframe if the condition is satisfed. In our implementation, we 
empirically set � = 5, � = 3, and �ℎ��� = 0.6. 

4.5 Description Generation Layer 
In this layer, WorldScribe aims to generate descriptions with adap-
tive details to the user’s intent and visual contexts. To achieve 
this, WorldScribe leverages a suite of VLMs that balances the trade-
ofs between their richness and latency to support real-time usage 
(Figure 8). 

To provide overview frst and details on the fy (D1), WorldScribe 
recognizes objects by YOLO World [27] and structures its results 
into short phrases, e.g., “A chair, a laptop, a monitor, ...” , allowing 
it to provide an overview of objects in the visual scene in real time 
(Figure 8b). Then, WorldScribe describes objects and their spatial 
relationship by prompting Moondream [10] (Figure 8c), a compact 
vision language model, that can achieve a decent performance in 
terms of latency and accuracy on this information based on our 
observation. Finally, WorldScribe prompts GPT-4v [7] to generate 
descriptions of diferent levels of details based on user contexts 
(D1). It ofers three levels of detail: Verbose, Normal, and Concise, 
associated with prompts specifying e.g., “over 15 words” , “at least 10 
words” , and “less than 5 words” , respectively. WorldScribe dynami-
cally adjusts these length constraints based on visual complexity. 
For instance, it becomes Verbose if the visual scene is focused on for 
a long period, indicating user interest, with consecutive keyframes 
identifed (See Section 4.4). It becomes Concise when multiple ob-
jects of interest are detected in consecutive keyframes to ensure 
timely coverage; otherwise, it remains Normal by default. Along 
with the recognized visual attributes of interest, WorldScribe dy-
namically creates prompts to suit users’ intent (D3): 

“You are a helpful visual describer, who can see and 
describe for BVI people. You will not mention this is 
an image; just describe it, and also don’t mention cam-
era blur or motion. Please ensure you provide these 
adjectives to enrich the descriptions [desired visual 
attributes (e.g., color, texture, shape, spatial), with ex-
amples adjectives], you should describe each object 
with ONLY ONE sentence at maximum. Don’t use 
’it’ to refer to an object. Most importantly, each sen-
tence should be [sentence length constraint e.g., verbose, 
normal or concise].” 
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Each short phrase from YOLO World [27], general description 
from Moondream [10], and detailed description from GPT-4v [7] 
are stored as a packet in the description bufer, and WorldScribe 
selects the most relevant and up-to-date one based on the user’s 
contexts, which we describe next. 

4.6 Description Prioritization Layer 
In this layer, WorldScribe aims to select a description based on the 
match to the user’s intent, proximity to the user, and relevance to 
the current visual context (D2). 

4.6.1 Sorting GPT-4v detailed descriptions by semantic relevance. 
Descriptions from YOLO World [27] and Moondream [10] provide 
an overview and general information, which should always be 
prioritized to help the user construct an initial understanding of 
the new visual scene (D1). In contrast, detailed descriptions from 
GPT-4v [7] may contain information irrelevant to the user’s intent. 
Therefore, WorldScribe ranks the descriptions generated by GPT-4v 
[7] based on their relevance to the user’s intent and the proximity of 
the described content to the user; the nearer, the earlier to describe. 

To achieve this, we frst get a set of descriptions from GPT-4v [7] 
� = {�� }. For a description �� , we compute the sentence similarity 
score SIM(�� ) to the user’s intent, and a depth score ����ℎ(�� ). To 
calculate the depth score, we extract the subject and its descriptors 
from a description (e.g., “Two cylindrical trash receptacles” in Figure 
9), locate each in the frame using CLIPSeg [56] (Figure 9b), and crop 
the salient area on the depth map generated by Depth Anything 
[84]. We then compute the average depth ����ℎ(�� ) of the cropped 
area for each description �� . 

To sort the descriptions in � , We divide them into two sets 
�� = �� |��� (�� ) >= Threshold, and �� = � � |��� (� � ) < Threshold. 

Figure 9: WorldScribe pipeline to prioritize descriptions 
based on semantic information. (a) Given an input keyframe 
image, GPT-4v [7] generates descriptions on individual ob-
jects. (b) CLIPSeg [56] generates the cropped image content 
based on each description. (c) The average depth value of 
the CLIPSeg-cropped area was computed for each described 
content with the depth map generated by Depth Anything 
[84]; the higher the depth map value, the nearer to the user. 
(d) The similarity score was also computed between each 
description and the user’s specifed intent. Finally, World-
Scribe prioritize GPT-4v [7] generated descriptions based on 
semantic relevance to the user’s intent, then proximity to 
the user (~1s). 

We then sort the descriptions in �� as a sorted sequence � = 
(�0, �1, ..., ��−1) based on the similarity score such that ��� (�� ) >= 
��� (��+1). We also sort sentence in �� as � = (��, ��+1, ...��+�−1)
based on the depth score such that ����ℎ(� � ) >= ����ℎ(� � +1). 
Finally, we concatenate the two sequences into fnal one, �⌢� = 
(�0, ..., ��−1, ��, ..., ��+�−1). This approach ensures the initial de-
scriptions are highly relevant to the user’s intent, regardless of 
proximity. The remaining descriptions are sequenced by their prox-
imity, with nearer elements described sooner. 

4.6.2 Selecting up-to-date description based on current context. In 
reality, users may move or turn frequently, and the environment 
can change signifcantly, leading to frequent visual changes and 
generating multiple keyframes and VLM requests in a short time. As 
VLM inference times vary, some descriptions may become outdated 
if they take too long to process and will not be useful to the user’s 
current visual context. Thus, we need to select descriptions that 
best represent the current visual scene. We consider four criteria: 
camera orientation, object compositions, frame similarity, and simi-
larity to previous descriptions. A description is selected if it satisfes 
any of these criteria. First, we check if the candidate description’s 
referenced object composition matches the current scene. Second, 
we compare the user’s orientation from the description’s referenced 
frame to the current orientation. Third, we compare the frame sim-
ilarity between the description’s referenced frame and the current 
frame using feature vectors extracted through VGG16 [71]. Descrip-
tions similar to preceding spoken descriptions are skipped, and 
the description bufer is renewed when a description is omitted. 
Descriptions generated by GPT-4v [7] are prioritized, followed by 
those from Moondream [10] and YOLO World [27]. 

4.7 Presentation Layer 
In this layer, WorldScribe aims to make descriptions audibly per-
ceivable to the user by considering users’ sound context. To achieve 
this, WorldScribe runs a sound detection module in the background 
and automatically manipulates the presentation of the descriptions 
accordingly. Based on our formative study, WorldScribe enables two 
audio manipulations on descriptions for the user to better perceive 
the description content in the noisy environment: (i) Pausing and 
(ii) Increasing volume. Users can fnd sound events that interest them 
and customize the corresponding manipulations on descriptions in 
WorldScribe app (Figure 6c). 

4.8 Implementation Details 
WorldScribe servers included a local server running on a Macbook 
M1 Max and another remote server with two embedded Nvidia 
GeForce RTX 4090. WorldScribe mobile app was built on an iPhone 
12 Pro and streamed the camera frames to the local server through 
a Socket connection. YOLO World [27] and ByteTrack [86] were 
run on the local server with 5 frames per second (FPS) along with 
other algorithms, while other models in description generation 
and prioritization pipeline, including Moondream [10], Depth Any-
thing [84] and CLIPSeg [56] were run on the remote server for 
each keyframe, as well as the pre-trained model “all-MiniLM-L6-v2” 
for sentence similarity from an open-sourced implementation on 
Huggingface. Overall, based on the data collected in our user study 
(Section 5), WorldScribe achieved an overall latency of 1.44s, and 
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Table 2: Participant demographics information. Participants in our formative study were marked as F1-F5. Participants in our 
user evaluation were marked as P1-P6. 
ID Age Gender Self-Reported Visual Ability Assistive App Use Self-Defned Goal in User Evaluation 
F1 34 Male Blind, since birth. Light perception. BeMyEyes N/A 
F2 25 Male Blind, later in life. Light perception. BeMyEyes, ENVision, 

TaptapSee, VoiceVISTA 
N/A 

F3 23 Female Blind, later in life. Light perception. None N/A 
F4 35 Male Blind, later in life. Light perception. BeMyEyes and Aira N/A 
F5 24 Male Blind, since birth. Light perception. BeMyEyes N/A 

P1 62 Male Low Vision, can’t pick up details, using 
magnifers. 

None Describe things on the wall. 

P2 53 Female Blind, since birth. SeeingAI, BeMyEyes Describe posters and people in detail. 
P3 60 Female Low Vision, can’t pick up details. None Describe paintings or pictures in detail. 
P4 40 Male Blind, since birth. Light perception. SeeingAI, BeMyEyes 

and SoundScape 
Describe any person. 

P5 87 Female Low Vision, can’t pick up details. None Describe artworks or paintings. 
P6 72 Female Blind, since birth. Light perception. SeeingAI, BeMyEyes, 

BeMyAI, Aira 
Describe things in general with more color 
and texture information. 

each component took an average: YOLO World 0.1s, Moondream 
2.87s, GPT-4v 8.78s, and prioritization pipeline 0.83s. For sound 
recognition, we used Apple’s Sound Analysis example repository 
[12], which provides a visualization interface (Figure 6c) and can 
identify over 300 sounds. 

5 USER EVALUATION 
We conducted a user evaluation with six BVI participants, where 
they used WorldScribe in three diferent contexts. This study aimed 
to explore RQ1: How do users perceive WorldScribe descriptions in 
various contexts? and RQ2: What are the gaps between WorldScribe 
descriptions and users’ expectations? We detail our study method 
and results below. 

5.1 Participants 
We recruited six BVI participants (2 Male and 4 Female) through 
public recruitment posts on local associations of the blind. Partic-
ipants aged from 40 to 87 (Avg. 62.3) and described their visual 
impairment as blind (N=3) or having residual vision (N=3). Some 
participants had prior experiences using RSA services and used 
AI-enabled services, such as BeMyEyes [2] or SeeingAI [11] in their 
daily lives (Table 2). 

5.2 Study Sessions 
We enacted three diferent scenarios: (i) specifc intent, (ii) general 
intent, and (iii) user-defned intent. In each session, the descriptions 
were automatically paused if the speech was detected, including 
the conversation between participants and the experimenter, and 
the volume was automatically increased if a ringtone occurred. 

Scenario with specifc intent. The frst scenario, similar to 
the walkthrough scenario (Section 4.1), happened in our lab space, 
which is furnished with glass walls, wall-mounted TVs, several 
work benches with electronics and equipment, several rows of seats 
with monitors and scattered personal items, and a small kitchen 
area with microwave, fridge, sink and a lot of cabinets and garbage 
bins at the corners. The user’s intent is “fnd a silver laptop on the 
desk, and monitors or other ofce objects might be around it.” This 

scenario was designed to encourage them to think about the de-
scriptions they need for specifc purposes and whether WorldScribe 
supplements or obscures their intent. 

Scenario with general intent. This scenario happened on one 
of our building’s foors, which has many common objects on the in-
tricate hallways, such as poster stands, carts for construction, trash 
cans, desks, and sofas. On the wall or doors, there were several 
artworks, paintings, posters or emergency plans, and TVs. Random 
people were also walking in the hallway or meeting at public tables 
during the study. The intent of the scenario is “I am exploring a 
school building. Describe general information on the appliances and 
the building decorations.” This scenario was designed to prompt 
users to think if WorldScribe descriptions support their understand-
ing of the environment. 

User-defned scenario. After experiencing the previous scenar-
ios, participants were asked to develop their own defned scenarios. 
They can also customize their desired visual attributes in World-
Scribe mobile app based on their needs. We then took participants 
to the place they wanted to explore near our experiment sites. 

Limitations. Though we tried to create diferent real-world 
scenarios, our study was conducted within our local environment 
and buildings. This setting may not fully capture the diversity and 
complexity of real-world environments, potentially limiting the 
generalizability of our fndings to other contexts. 

5.3 Procedure 
After providing informed consent, participants were introduced 
to WorldScribe and the functionalities they could customize, and 
experienced through each session. Participants opted to either hold 
the camera on their front or wear the lanyard smartphone mount 
we prepared. To facilitate the study progress and avoid fatigue, we 
kept each exploration for around ten minutes or until participants 
paused spontaneously. At the end of each session, we interviewed 
our participants about their experiences with WorldScribe. The 
study took about two hours, and participants were compensated 
$50 for their participation. This study was approved by IRB in our 
institution. 
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5.4 Measures and Analysis 
We asked our participants to comment on their perceived accuracy 
and quality of descriptions, their confdence in WorldScribe descrip-
tions, and several other open-ended questions. We recorded and 
transcribed the interviews and recorded all interactions with World-
Scribe, which was also used for our pipeline evaluation (Section 6). 
Two researchers coded all qualitative interview feedback received 
in all sessions for further analysis via afnity diagramming. 

5.5 Results 
5.5.1 Perceived accuracy and skepticism towards the descriptions. 
Participants perceived WorldScribe descriptions as accurate 
based on the contextual clues they ascertained but remained 
skeptical due to a few observed erroneous instances. Partici-
pants generally commended WorldScribe for providing information 
otherwise unavailable in their everyday lives. They appreciated 
its constant descriptive capabilities, fnding them useful for daily 
tasks such as grocery shopping, locating dropped items, and explor-
ing the outdoors. Participants valued the real-time feedback and 
considered the descriptions accurate and responsive. For instance, 
some (P2, P4) tested the system by placing their hands in front of 
the camera and received immediate descriptions of their hands and 
accessories: 

“I just wanted to test if it can describe the rings on my 
hand, it’s like wow it did describe, and did a pretty good 
job and so responsive, so I think it’s accurate for what 
it sees.” - P2 

Despite acknowledging the accuracy and timeliness of World-
Scribe’s descriptions, participants expressed tentative skepticism 
about its practical use due to several factors. For example, occasional 
hallucinations, such as detecting motorcycles in the building lobby 
or bikes in the ofce space, impacted their confdence in World-
Scribe’s descriptions. Other instances where WorldScribe failed to 
mention essential information also led to doubts: 

“I am not confdent because I put my eyedrop in front 
of me to see if it would pick it up, but it did not, which 
is fne as I guess it is not programmed for that. But it 
will be very useful in this case.” - P1 

However, some pointed out the walk-up-and-use study design made 
them unable to fully explore and get used to WorldScribe: 

“Honestly, I remain conservative using it of the street 
tomorrow. But being used to the systems, I think if I had 
some time to get used to it, I could work with it.” - P4 

But in general, they foresaw the promise and benefts WorldScribe 
can bring otherwise unavailable from existing apps, such as the 
real-time experiences and the adaptive level of details: 

“It’s closer to SeeingAI and BeMyEyes descriptive mode. 
Initially, it’s like desk, chair, ... and become descriptive 
like a human, more color and context, if you are looking 
at things longer” - P2 

5.5.2 Perceived quality and customized visual information on the 
AI-generated descriptions. Participants found WorldScribe de-
scriptions useful with adaptive and customized visual infor-
mation, but felt overwhelmed in some situations. Participants 

noted several useful aspects of WorldScribe’s descriptions. For in-
stance, WorldScribe starts with an overview and provides details 
on the fy for each new visual scene. Hence, if a participant’s quick 
movements or turns lead to a succession of new scenes, they receive 
an overview for each. In contrast, if they focus on the same scene for 
a while, they receive detailed descriptions. One participant noted: 

“It’s interesting when it just provided only a few words 
when I moved or turned, like a desk, a chair, a person, 
it’s nice to know what is included in this space. And I got 
details if I faced that for a little longer. I like the switch 
between these low-level and high-level descriptors. If 
I’m in the moment that I should picture things myself; 
it’ll just give me low-level descriptors. I appreciate that 
... But if I’m looking for something and I’m trying to 
fgure out where I’m near, or get some landmarks and 
stuf. Then I appreciate the higher-level stuf.” - P4 

Aside from the level of granularity, participants also perceived 
the increased descriptions in their customized visual attributes. 
For instance, P2 made our system verbose on color and spatial 
relationships and remarked: 

“This session did a better job at giving color descriptions. 
Also, it described more things like I said, location of 
things like in front of you, next to you, behind, you 
know, to your right or things of left.” - P2 

Moreover, participants found WorldScribe ofered unique and en-
riching experiences, “[WorldScribe] used strong words, so beautiful.” 
(P3). They (P2, P4, P6) also pondered the balance between World-
Scribe’s detailed visual descriptions and their practical use, sug-
gesting that the descriptions should be more colloquial to mimic a 
human describer who provides the minimum viable information: 

I’ve never thought of a building being lit by tubes like 
a pattern or a line. It’s all interesting for a blind person 
to have their eyes open to this stuf because I’ve never 
seen it before. It’s all interesting information for me, but 
as far as practical use, I could get overwhelmed with it. 
Part of my brain loves it. Part of my brain is, Oh, I don’t 
need it. So it’s really interesting to be in this position. It 
really depends on the environment or your goal. - P4 

5.5.3 Alignment between users’ mental model on the real world and 
what WorldScribe sees. Participants desired the descriptions 
responsive to their physical reach, and the spatial informa-
tion should center on them but not the image. During study 
sessions, we found that camera aiming issues caused misalignment 
between what users thought and what WorldScribe described. For 
instance, some participants (P2, P3) held the smartphone in their 
hands to explore their surroundings. They were confused if World-
Scribe missed describing the objects they touched, perceiving them 
to be something in their front captured by the camera. P2 frequently 
questioned during the study “It did not describe when I touched it 
[laptop]. I wasn’t sure if I was getting it within the camera.” P4, 
who thought the camera did not capture what he needed, wanted 
to change the camera mount “Maybe next time I can use another 
camera headset that is over my eyes”. Our subsequent video analysis 
found that their hands and the touched objects were beneath the 
smartphone and not captured within the frame. 
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Some participants also mentioned that WorldScribe could sup-
plement their mobility with a white cane. For instance, they could 
confrm they had arrived at the exit upon hitting a chair, as World-
Scribe had previously described the “exit” and “chair” together.: 

I have my cane and am able to follow the directions 
to the exit. When I go over that area, you see where 
the stack of chairs is, as [WorldScribe] mentioned that 
before. So like it would say chairs when I hit it. Okay 
I’m going the right way. - P1 

However, what WorldScribe saw was based on a single image, lim-
iting its understanding of the user’s surroundings and creating 
erroneous spatial information. For example, the ‘left’ or ‘right’ was 
determined by the spatial relationships within an image rather than 
the user’s point of view. Some participants observed this discrep-
ancy but understood that WorldScribe focused on describing their 
surroundings instead of providing directions. Consequently, they 
proposed integrating WorldScribe with other apps to provide more 
comprehensive experiences, which we described in the next section. 

5.5.4 Desires on more concrete information for practical use. Partic-
ipants desired concrete information for practical use in their 
daily lives, such as distance, directions, or pre-loaded map 
information. Participants found WorldScribe useful for general 
environmental understanding. However, for high-stakes scenar-
ios such as navigation, participants believed WorldScribe could 
supplement their experiences with existing navigation apps. For 
instance, navigation apps often provide general directions such 
as “turn right at the next intersection”, but it can be hard for BVI 
individuals to determine if they have reached the intersection or 
are at the crossroads. WorldScribe can assist this by describing their 
visual surroundings. Additionally, some asked for more concrete 
information along with visual descriptions, such as spatial relation-
ships from their perspective, exact distances to objects, and their 
continuous updates: 

“ It would be like pre-loading the space. when I was 
looking for a classroom for approximately 3 doors or 
how many feet, and then you’re gonna turn right. And 
then 4 doorways down on the right, that gives me a 
directional type of thing. When you’re blind you have 
to do it by calling and checking the space, having that 
description and that context can help.” - P2 

Additionally, they wanted to have more control over the descrip-
tions and integrate with spatial audio, as one participant, who used 
SoundScape [9], mentioned: 

“I could have [WorldScribe] running in the background. 
It’d be almost like a lucid dream if you had it on the 
spatial audio. Okay, that’s over there. I want to know 
more about that. So I turn toward it. Then, it changes 
the environment to show me that I’m facing that exact 
thing. That’d be really beautiful.” - P4 

Although WorldScribe was not designed for real-world navigation, 
these insights from users are invaluable for guiding our next steps 
by designing and making visual descriptions integrated into more 
practical and high-stake scenarios. We discuss the lessons learned 
from the study and potential improvements of live visual descrip-
tions in Section 7. 

6 PIPELINE EVALUATION 
In this evaluation, we measured the accuracy, coverage of user-
desired content, and description priority based on users’ intent 
and proximity of described content. We collected data from our 
user evaluation, such as descriptions and their generative models, 
timestamps, referenced frames and prompts, customization settings, 
screen recordings, etc. These videos and frames were naturally cap-
tured by BVI participants in our user evaluation, resulting in camera 
motions or slants that impacted image quality, but it preserved the 
authenticity and relevance of our fndings to real-world experiences. 
Each study session’s video recording lasted around ten minutes, as 
described in Section 5. 

6.1 Accuracy 
We measured the accuracy of WorldScribe descriptions by inspect-
ing the description content and the referenced frame. 

Dataset & Analysis. In total, we collected 2,350 descriptions 
from our user study. The description sources included YOLO World 
[27], Moondream [10], and GPT-4v [7]. We inspected each descrip-
tion and considered descriptions incorrect if they could not be 
justifed through their referenced camera frame. 

Results. Overall, we found that 370 of 2,350 instances (15.74%) 
were incorrect in relation to the referenced camera frame. Specif-
cally, 122 of the 638 descriptions (19.12%) from YOLO World were 
incorrect, 72 of the 549 (13.11%) descriptions from Moondream were 
incorrect, and 176 of the 1,157 (15.21%) descriptions from GPT-4v 
[7] were incorrect. 

We observed several reasons for incorrect descriptions. For in-
stance, when prompted to generate object classes based on users’ 
intent for YOLO World [27], GPT-4 [5] sometimes generated classes 
that could not be identifed in our study environment, such as mu-
seum, exhibition, and classroom. Additionally, the low image quality 
signifcantly impacted the accuracy of descriptions. For example, 
YOLO World [27] often mistook whiteboards, paper, walls, or illumi-
nated monitor screens for other objects. Moondream [10], prompted 
to provide general descriptions, performed well in covering com-
mon objects and their spatial relationships but sometimes included 
hallucinated content. For GPT-4v [7], lighting conditions or capture 
angles afected the results. For example, a cabinet was mistaken 
for a washer and dryer when shot from the side, cluttered folding 
chairs were mistaken for motorcycles or bicycles, and a male with 
long hair was identifed as female. 

6.2 Coverage of User Intent 
We measured if WorldScribe descriptions covered important content 
of the users’ intent in a timely fashion. 

Dataset & Analysis. We used the smartphone video recordings 
of the P1-P5 self-defned scenario due to their concrete intent. To 
determine whether the descriptions covered the essential content 
related to users’ specifed intent, we developed video codes to anno-
tate the objects that should be described in the footage. One of the 
authors carefully reviewed each recording and annotated the ob-
jects relevant to users’ intent. For example, we labeled items on the 
wall for P1’s intent “Describe things on the wall” and labeled people 
for P4’s intent “Describe any person.” In each video, we observed 
that participants sometimes turned around or moved frequently, or 
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Figure 10: Example results of description priority. (a) The descriptions relevant to the user’s intent were successfully prioritized. 
(b) If no subjects meet the user’s intent, descriptions would be ordered based on the distance to the user. (c) The priority of 
similarity to the user’s intent failed if a description involves the user’s intent as supplement information such as spatial 
relationship. (d) The distance priority to the user failed if the camera was angled down and WorldScribe took the foor as 
nearest to the user. 

people in the video also moved dynamically, leaving some objects 
of interest to appear only briefy in the video. Thus, we annotated 
an object only if it lasted long enough and was clear enough to 
identify without pausing the video. Each label covered a time range 
from when the object appeared to when it disappeared from view. 
Another author then examined each label and marked it as covered 
if the descriptions within the time range included the annotated 
objects. We had 64 labels in total from the fve video recordings. 

Limitations. Due to the small pool of participants and the lim-
ited study time, we did not have a comparable number of ground 
truth labels to those standard video datasets. We will discuss more 
about this in Section 7.3. 

Results. We found that 75% of annotated objects (48 out of 64) 
were covered by WorldScribe descriptions. Based on our post ex-
amination, WorldScribe successfully described and covered objects 
of users’ intent in most cases if users faced for a long period, but 
failed in a few cases that an object was partially occluded. We also 
observed that WorldScribe failed to describe an object of users’ in-
tent in time if WorldScribe was still describing the previous visual 
scene while users had already moved to a new one. 

6.3 Description Priority 
We measured if WorldScribe prioritized descriptions based on users’ 
intent or the proximity of described content to users. 

Dataset & Analysis. In total, we collected 120 descriptions by 
randomly selecting 20 descriptions generated by GPT-4v [7] from 
each participant’s self-defned scenario. We marked an instance 
as correct if the presented description was relevant to the user’s 
intent, or if the described content was nearest to the user. 

Results. Our analysis revealed that 97 out of 120 descriptions 
(80.83%) aligned with user intent or were prioritized based on the 
proximity of the described content to the user. We found that errors 
commonly occurred when the relevant information was present 
but not the focus, such as considering the user’s intended object 
as spatial reference (Figure 10c). Additionally, camera angles often 
varied, sometimes tilting towards the foor or ceiling, which was 
recognized as the nearest content to the user (Figure 10d). 

7 DISCUSSION AND FUTURE WORK 
In this section, we discuss our lessons learned and design implica-
tions for context-aware and customizable live visual descriptions. 
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7.1 Challenges in Describing the Real World 
Describing the real world is more challenging than digital visual 
media due to the need for timely descriptions aligned with users’ 
intent and the higher standards and expectations in high-stakes 
situations. While WorldScribe made an important step toward pro-
viding context-aware live descriptions, participants brought up 
several aspects and challenges for future research to address. 

First, while WorldScribe simulated short-term memory by avoid-
ing repeated descriptions within preceding sentences (Section 4.6.2), 
participants expressed a need for more sophisticated long-term 
memory for visual descriptions. They suggested that previously 
navigated spaces or paths should not be reintroduced upon revis-
iting; instead, only visual changes or new elements since the last 
visit should be described. Spatial information should reference a 
series of camera frames or more complete data source to construct 
and represent users’ environment (e.g., real-time NeRF [29, 53]), 
rather than relying on a single video frame. 

Second, it is hard for users to express their intent in a few sen-
tences, which may implicitly change over time when exploring 
an area. This need to update intents was highlighted by our par-
ticipants, who hoped to converse with the system to update their 
intent or clarify the confusing descriptions, similar to how they in-
teract with human describers. Ideally, aside from such turn-by-turn 
interactions, a context-aware live visual description system should 
implicitly learn and adapt to the user’s intent and environment 
through long-term interactions with users to reduce friction and in-
crease usability. Future works could incorporate other data sources 
and modalities, such as GPS data, maps, visual details in videos or 
images, and description history to enable long-term memory. 

7.2 Towards More Humanized Descriptions 
Besides the challenges in crafting useful descriptions for the real 
world, the way to present descriptions could also infuence users’ 
understanding or engagement with visual media or scenes. For 
instance, describing from a frst-person or third-person perspec-
tive could afect immersion in the environment [24]. Tone, voice, 
and syntax [14, 18, 21, 22, 28, 66] could also signifcantly impact 
experiences and comprehension. During our study, we received 
varied comments and preferences on these presentation aspects. For 
example, participant P4 described WorldScribe’s voice as "hoarse," 
making the content unclear and uncomfortable. While some appre-
ciated WorldScribe’s current tone, others found the descriptions 
"artistic" or "poetic" and too wordy for practical use. Also, while par-
ticipants appreciated WorldScribe’s pauses or increased volume for 
presentation clarity, they hoped WorldScribe could provide transi-
tioning descriptions or earcons when shifting to a new visual scene 
to ensure it was describing the current but not the previous scene. 
They further noted that human describers use more colloquial lan-
guage than WorldScribe when conveying useful information, and 
prioritize their clarity over grammatical nuances. Future works 
should consider and enable more customizations of presentation. 

7.3 Benchmarking Dataset for Live Descriptions 
Our pipeline evaluation was limited to data from six BVI people to 
refect real-world experiences with WorldScribe, which are diferent 
from the current video captioning dataset in several aspects. 

First, the quality of video is quite diferent from that of standard 
datasets. For instance, frames occasionally appear at unusual angles 
or become blurred due to several factors such as users’ movement, 
whether the camera is handheld, attached to a swinging lanyard, or 
tucked inside a pocket. Second, objects of interest may not appear 
consistently across consecutive frames and could be partially ob-
scured or located to the periphery, as camera aiming is particularly 
challenging for BVI people [19, 20, 34, 78, 79]. Third, to provide 
useful live visual descriptions, it is important to provide concrete 
details beyond describing visual events, such as providing distances 
or sizes in concrete units (e.g., feet, meters). Fourth, spatial relation-
ships of objects should pivot to users’ perspective (e.g., using clock 
directions), rather than the image itself (e.g., something on your 
left but not something on the left of the image). 

To enable appropriate evaluation of live descriptions, additional 
datasets and metrics are needed. First, a potential metric is contex-
tual responsiveness, which evaluates if the utility of descriptions 
aligns with the current context, such as having directions during 
navigation, having rich adjectives when viewing artworks, or de-
scribing objects reached by the user physically. The second potential 
metric is contextual timeliness. For instance, high-stakes scenarios 
may require a higher timeliness to signal potential danger before 
it happens (e.g., the status of trafc light, whizzing car), while 
low-stakes scenarios could have much room for latency. Third, a 
potential metric is contexual detailedness, which evaluates whether 
a description provides only the necessary information without ex-
cess visual detail (e.g., using multiple adjectives when the user is 
only interested in color, or describing the status of all three trafc 
lights instead of just the lit one). Overall, evaluating the context-
awareness of live descriptions involves multiple factors. To fulfll 
such high demand for live visual descriptions in the real world, 
future works should develop ways to collect and annotate video 
datasets shot by BVI people. It is also notable for including such 
datasets in existing ones to carefully build a universal and unbiased 
dataset that is not skewed toward any particular group. 

7.4 Generalizing WorldScribe 
We envision expanding WorldScribe to other media formats and 
integrating the rapidly evolving AI capabilities in the future. First, 
WorldScribe could be tailored to visual media that require immedi-
ate descriptions. For instance, when describing 360-degree videos 
[24], it was hard for describers to pre-populate audio descriptions 
for the diferent felds of view with rich information due to the 
user’s unpredictable viewing trajectory. It would be benefcial for 
WorldScribe to generate live descriptions responsive to the user’s 
current view, while automatically pausing descriptions when im-
portant sounds happen (e.g., narration), or increasing volume when 
unimportant sounds occur (e.g., background music) in the video. 

Second, WorldScribe could also be extended to support low-
vision users who may use wearables to receive visual aids in the 
real world [63, 88, 89]. For instance, the type of visual enhancement 
could be determined based on the user’s mobility states and visual 
scenes, similar to WorldScribe detecting the user’s orientation and 
frame similarity to provide corresponding descriptions. Also, live 
visual descriptions could confrm the visual scene for low-vision 
users, and WorldScribe could use the visually enhanced image 



UIST ’24, October 13–16, 2024, Pitsburgh, PA, USA Ruei-Che Chang, Yuxuan Liu, and Anhong Guo. 

frame from the wearables to increase description accuracy. Future 
works could explore integrating diferent assistive technologies 
(e.g., wearables, navigation systems) as an ecosystem to provide 
corresponding contextual support. 

7.5 Directions with Rapid Evolution of Future 
Large Models 

WorldScribe provided live visual descriptions by leveraging LLMs 
to understand users’ intent and an architecture that balances the 
tradeofs between latency and richness of diferent VLMs. Given 
the rapid evolution of VLMs and LLMs and computing power in 
recent years, it is foreseeable that accuracy and latency will signif-
cantly improve. This progress may possibly lead to the reliance on 
fewer or even a single large multimodal model (e.g., GPT-4o [6]) 
to generate descriptions of varying granularity, but raising further 
questions about which inputs beyond images should be included 
when prompting. Additional contextual factors, such as environ-
mental sounds, GPS data, and users’ state and activities, could be 
considered, and the prompt structure could be dynamically changed 
based on these inputs and user needs. Future work could also ex-
plore incorporating more advanced AI models into the description 
generation process. For instance, we could improve descriptions 
with additional verifcation [37], deblur or increase resolution of 
the image for clarity, construct a 3D scene on the fy to provide 
accurate spatial information [29, 53], and explain sound causal-
ity by cross-grounding visual and audio data [55, 76, 87]. Future 
works should explore these possibilities in such a rapidly evolving 
landscape of computational platforms and AI model capabilities. 

8 CONCLUSION 
We have presented WorldScribe, a system towards providing context-
aware live visual descriptions to facilitate the environmental un-
derstanding for BVI people. Through a formative study with fve 
BVI people, we identifed several design goals of providing context-
aware live visual descriptions. We implemented several components 
to tailor user’s contexts, such as enabling users to specify their in-
tent and generate descriptions tailored to their needs, providing 
consecutive short or long detailed descriptions based on visual con-
text, and presenting descriptions with pausing or volume increased 
based on the sound context. Through an evaluation with six BVI 
people, we demonstrated how they perceived the WorldScribe de-
scriptions and identifed gaps in fulflling their expectations for 
using WorldScribe descriptions in practice. Through a pipeline 
evaluation, we showed WorldScribe can provide fairly accurate 
visual descriptions, cover information about the user’s intent, and 
prioritize descriptions based on the user’s intent. Finally, we dis-
cussed more challenges in describing the real world, how to make 
descriptions more humanized and usable, and potential benchmark 
datasets. Through this work, we also recognized promoting real-
world accessibility through live descriptions will be a long-term 
overarching problem, considering the diversity of people’s needs 
and the complexity of real-world environments. 
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Figure 11: Example study route, keyframes, and WorldScribe-generated descriptions in our user study with P6. 
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